Stochastic-Lazier-Greedy Algorithm for monotone non-submodular maximization
نویسندگان
چکیده
منابع مشابه
Non-Monotone Adaptive Submodular Maximization
A wide range of AI problems, such as sensor placement, active learning, and network influence maximization, require sequentially selecting elements from a large set with the goal of optimizing the utility of the selected subset. Moreover, each element that is picked may provide stochastic feedback, which can be used to make smarter decisions about future selections. Finding efficient policies f...
متن کاملConstrained Maximization of Non-Monotone Submodular Functions
The problem of constrained submodular maximization has long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of nonmonotone submodular maximization is not as well understood: the first approximation algorithms even for unconstrainted maximization were given by Feige et al. [FMV07]. More recently, Lee et al. [LMNS09] ...
متن کاملMaximization of Non-Monotone Submodular Functions
A litany of questions from a wide variety of scientific disciplines can be cast as non-monotone submodular maximization problems. Since this class of problems includes max-cut, it is NP-hard. Thus, general purpose algorithms for the class tend to be approximation algorithms. For unconstrained problem instances, one recent innovation in this vein includes an algorithm of Buchbinder et al. (2012)...
متن کاملNon-Monotone DR-Submodular Function Maximization
We consider non-monotone DR-submodular function maximization, where DR-submodularity (diminishing return submodularity) is an extension of submodularity for functions over the integer lattice based on the concept of the diminishing return property. Maximizing non-monotone DRsubmodular functions has many applications in machine learning that cannot be captured by submodular set functions. In thi...
متن کاملGuarantees for Greedy Maximization of Non-submodular Functions with Applications
A. Organization of the Appendix Appendix B presents the proofs for our approximation guarantees and its tightness for the GREEDY algorithm. Appendix C provides details on existing notions of curvature and submodularity ratio, and relates it to the notions in this paper. Appendix D presents detailed proofs for bounding the submodularity ratio and curvature for various applications. Appendix E gi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Industrial & Management Optimization
سال: 2021
ISSN: 1553-166X
DOI: 10.3934/jimo.2020085